The effect of kyphosis in Motor Control Test

Moo Kyun Park, MD1, Jae Jun Song M.D2, Jae-Gu Cho, MD1, Cnage Jae Choi, MD1, Hung Jin Jun, MD1, Sung Won Chae, MD1

1 Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
2 Department of Otolaryngology-Head and Neck Surgery, Dongguk University International Hospital, Gyeonggi, Korea

INTRODUCTION

The prevalence of kyphosis in elderly population is considered between 20% and 40%. 1 Kyphosis is known as the sagittal convexity of the vertebral column that is characterized by convexity of thoracic spine. 2 Falls due to decline of posture and balance control in the elderly are common and they are the most frequent causes of injuries such as fractures, sprains, and even death. 3 The frequency of falls among the elderly is no high that 30% of this age group falls each year. Falls in the elderly can result in hip fractures, severe injuries, and even death. 4 The frequency of falls among the elderly is no high that 30% of this age group falls each year. Falls in the elderly can result in hip fractures, severe injuries, and even death. 4 Some studies suggest that kyphosis alters balance and increased falls. 5-7 Moreover, changes in normal adults. As stimulation was increased, the amplitude was significantly reduced in backward translation than in forward translation of kyphosis. There was no statistical significance between angle of 30 and 45 kyphosis in backward body movement. There was no statistical significance between angle of 30 and 45 kyphosis in backward body movement. The change of latencies in kyphosis at the forward translation of MCT was not significant. The latency and amplitude of MCT were compared in medium stimulation. Both in forward and backward body movement, there was no statistical significance between angle of 30 and 45 kyphosis. The reason is thought that the center of gravity of healthy individuals located in right posterior side of body and kyphotic persons located in left posterior side of body. Therefore, the center of gravity was deviated from normal position. As a result, the latency and amplitude were different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture.

DISCUSSION

The change of latencies in kyphosis at the forward translation of MCT was not significant. The latency and amplitude of MCT were compared in medium stimulation. Both in forward and backward body movement, there was no statistical significance between angle of 30 and 45 kyphosis. The reason is thought that the center of gravity of healthy individuals located in right posterior side of body and kyphotic persons located in left posterior side of body. Therefore, the center of gravity was deviated from normal position. As a result, the latency and amplitude were different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture. The reason is thought that the center of gravity of healthy individuals located in right posterior side of body and kyphotic persons located in left posterior side of body. Therefore, the center of gravity was deviated from normal position. As a result, the latency and amplitude were different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture.

CONCLUSIONS

The change of latencies in kyphosis at the forward translation of MCT was not significant. The latency and amplitude of MCT were compared in medium stimulation. Both in forward and backward body movement, there was no statistical significance between angle of 30 and 45 kyphosis. The reason is thought that the center of gravity of healthy individuals located in right posterior side of body and kyphotic persons located in left posterior side of body. Therefore, the center of gravity was deviated from normal position. As a result, the latency and amplitude were different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture. The amplitude was reduced as the kyphosis was progressed, however it was not significant different between kyphosis and normal posture.

REFERENCES