Dysphagia is a common post-treatment morbidty for patients with head and neck cancer (HNC) treated with chemoradiation (CRT). Previous studies have demonstrated that pre-treatment swallowing exercises may improve post-treatment swallowing function and quality-of-life in (QOL) patients with HNC treated with CRT.

Objectives:
- Estimate the incremental cost-effectiveness ratio (ICER) of pre-treatment swallowing exercises with post-treatment swallowing exercises (current standard).

Design:
- Cost-effective analysis

Results:
- Pre-treatment swallowing exercises were less costly and resulted in a greater gain in quality-adjusted life-years (QALYs) compared to post-treatment swallowing exercises after intervention following CRT.
- Sensitivity analysis adjusting both costs and utilities had minimal impact on results as ICER continued to be advantageous or deleterious in tube-dependency at one-year post-treatment.

Conclusions:
- Based on a Markov state-transition model, implementing pre-treatment swallowing exercises offers a clinical benefit in patients treated with CRT for HNC with significant cost savings relative to the current standard of care.

RESULTS

- Three possible states were designed (Figure 1). Initially, all patients were all distributed into the Tube-dependent state (n=100). Patients could either remain in the current state or advance to the next level.

MODEL

- We created a Markov discrete-time state transition model based on a cohort of 100 hypothetical patients to evaluate the cost-utility of pre-treatment swallowing exercises in patients with HNC treated with CRT. A 1-month cycle period was selected to capture improvement over the first year post-treatment (12 constant cycles). A matrix of probabilities were applied in each successive cycle. Costs were estimated from Medicare reimbursement data. QOL estimates were obtained through convenience sampling.

- **Sensitivity Analyses**

 - Several assumptions were made during model development and sensitivity analyses were performed to test the effect of variations in these values of the estimates in our model.

CONTACT

Kendrea L. Focht, CScD, CCC-SLP, E-mail: focht@musc.edu
Tel: (843) 792-8510

This project was supported by the South Carolina Clinical & Translational Research (SCTR) Institute, with an academic home at the Medical University of South Carolina, NIH/NCCR Grant Number 5U01RR009986 and U10RR028982

REFERENCE

