Detection and Management of Skull base Cerebrospinal fluid leaks using HRCT-MRI Fusion Imaging

Abib Agbetoba, MD1; Satish Govindaraj, MD1; Bradley Delman, MD1; Joshua Bederson, MD1
1Mount Sinai School of Medicine

ABSTRACT

Abstract

Background: Endoscopic repair of cerebrospinal fluid (CSF) leaks has been well described in literature as an effective and conventional repair for the treatment of central spinal fluid (CSF) leaks with reported success rate of over 90%. Continued advancements in endoscopic equipment and technique have improved surgical outcomes by providing greater exposure and higher resolution imaging through a minimally invasive approach. However despite the ongoing evolution of endoscopic surgery and new imaging modalities there continues to be limitations, particularly with site localization in patients with CSF-leaks.

Methods: We retrospectively reviewed 16 cases of patients who underwent HRCT-MRI fusion studies with intraoperative fluorescein localization for the evaluation and repair of CSF leaks during a three year period between 2008 and 2011 at the Mount Sinai Medical Center.

Results: 24 HRCT-MRI fusion studies were evaluated from patients suspected of having anterior skull base CSF leaks. 19 of 24 subjects had a confirmed diagnosis of CSF leak on intraoperative nasal endoscopy and 182 transferrin. HRCT-MRI fusion imaging accurately identified the CSF leak and its localization in each of the 19 subjects yielding a sensitivity of 100%. 4 of the 24 patients were found to have no signs of active leak or skull base defect on intra-operative nasal endoscopy, 3 of which correlated with negative findings on fusion imaging. One additional patient found to have a negative HRCT-MRI fusion study underwent two CT stereotaxies, each negative and confirming the absence of a CSF leak.

Conclusion: HRCT-MRI fusion is an excellent imaging modality that not only provides accurate identification and localization of CSF leaks but also acts as a great adjunct for intra-operative localization and repair. HRCT-MRI fusion imaging should be incorporated into the diagnostic algorithm for the management of CSF leaks.

INTRODUCTION

Surgical endoscopic approach to the anterior skull base has been well documented in literature as an effective and conventional repair for the treatment of central spinal fluid (CSF) leaks with reported success rate of over 90%. Continued advancements in endoscopic equipment and technique have improved surgical outcomes by providing greater exposure and higher resolution imaging through a minimally invasive approach. However despite the ongoing evolution of endoscopic surgery and new imaging modalities there continues to be limitations, particularly with site localization in patients with CSF-leaks.

METHODS & TECHNIQUE

A retrospective chart review was conducted on all patients who underwent HRCT-MRI fusion imaging for the evaluation of CSF leak presenting between 2008 and 2011.

Initial diagnosis or clinical suspicion of CSF leakage was made based on either subject’s history of persistent clear nasal discharge, nasal endoscopy significant for CSF rhinorrhea, or laboratory confirmation of CSF through beta-2 transferrin analysis.

16 subjects with presumed CSF leakage were then referred to obtain HRCT and MRI imaging to be performed consecutively on the same day. CT imaging included a non-contrast helical acquisition with reconstructed images of the paranasal sinuses and temporal bones. Images were reconstructed with a 35% overlap (0.625mm images every 0.44mm) to minimize step-ladder artifact during processing. MRI imaging was then performed using combined sinus and temporal bone clinical protocol, both pre and post IV Gadolinium. Acquisition included a volumetric T2 CUBE (extended echo train T2 volumetric acquisition) in the coronal plane to optimize characterization of fluid. Source CT data and MRI T2 CUBE images were sent to a dedicated post-processing workstation capable of independently co-registering data sets. To achieve registration, field of view was matched between the sets, and then translation and rotation were progressively modified until the datasets were in alignment. Fused images are portrayed with the T2 sequences indicated in a color gradient (rainbow spectrum) superimposed over grayscale bone images.

Patients obtaining HRCT-MRI fusion imaging subsequently underwent intraoperative fluorescein localization for the evaluation and repair of CSF leaks.

RESULTS

<table>
<thead>
<tr>
<th>(+) CSF Leak</th>
<th>(-) CSF Leak</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) HRCT-MRI</td>
<td>Sensitivity = 100%</td>
</tr>
<tr>
<td>(-) HRCT-MRI</td>
<td>Specificity = 80%</td>
</tr>
</tbody>
</table>

REFERENCES

3. Mosto et al were the first to describe fusion of HRCT and MRI imaging modalities with reported sensitivity of 89.74%.

DISCUSSION

The limitations and morbidity associated with diagnostic imaging studies such as HRCT, MRI, and CT arteriography in detecting CSF leaks has created a need for more accurate and less invasive radiographic imaging modalities. In our study we evaluate a novel technique of fusing HRCT and MRI imaging modalities with reported sensitivity of 89.74%.

CONCLUSIONS

HRCT-MRI fusion is an excellent imaging modality that not only provides accurate identification and localization of CSF leaks but also acts as a great adjunct for intra-operative localization and repair. We believe that this new technique will not only improve surgical confidence but may also have the potential to decrease surgical complication rates. HRCT-MRI Fusion should be incorporated into the diagnostic algorithm in the management of CSF leaks.