

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE

Opioid Prescription Post-Endoscopic Pituitary Surgery: Unveiling Demographic Disparities and Trends from 2011-2023

Shreya Vinjamuri MSc, Maxwell Pickles BS, Zinoubia Hasasna BS, Roger Murayi MD, James Evans MD Thomas Jefferson University Hospital Department of Neurosurgery

Introduction

Endoscopic pituitary surgery is a minimally invasive approach widely used for pituitary adenomas, with over 5,000 cases annually in the U.S.. Effective postoperative pain management is essential to ensure patient recovery while minimizing opioid-related adverse effects such as dependency, respiratory depression, and gastrointestinal complications.

• Opioid prescriptions are common post-surgery (~75% of patients receive opioids), but ~20% develop long-term use, increasing the risk of dependency.

Results

Fig 1. Trends in Opioid Usage over Time

Fig 2. Number of Patients per Annual Cohort

- Recent guidelines promote multimodal pain management, emphasizing NSAIDs and acetaminophen to reduce opioid reliance.
- Racial and gender disparities in opioid prescribing have been documented, but limited research exists on trends specific to neurosurgical patients.
- Objective: This study analyzes temporal prescription trends, demographic disparities, and regional differences in opioid and NSAID prescribing patterns following endoscopic pituitary surgery.

Methods

Data Source & Study Design

			p-value	Residual	
Drug	Intercept	Year	(Year)	Deviance	AIC
Opioids	-72.75	0.04	<0.001	31.85	125
Tramadol	-91.27	0.04	<0.001	13.98	88.73
Hydrocodone	-30.25	0.01	0.072	33.96	116.1
Oxycodone	-186	0.09	<0.001	4.69	85.75
Morphine	-19.9	0.01	0.377	14.9	93.06
NSAIDs	234.2	-0.1	<0.001	28.32	106.8

Table 1. Poisson Regression for Count Data

Predictor	Estimate	Std. Error	z value	Pr(> z)	VIF
Intercept	-53.400	120.800	-0.442	0.658	
Year	0.025	0.060	0.416	0.677	57.590
Male	0.001	0.001	0.991	0.322	42.808
Female	0.000	0.002	0.000	1.000	142.616
Other Race	-0.021	0.006	-3.610	0.000	
Northeast	0.004	0.001	2.593	0.010	

Table 3. Optimized Model for Tramadol Prescription Counts

Predictor	Estimate	Std. Error	z value	Pr(> z)	VIF
Intercept	868.000	89.270	9.722	< 2e-16	
Year	-0.433	0.044	-9.750	< 2e-16	57.590
Male	0.001	0.001	1.490	0.136	42.808
Female	0.011	0.001	9.461	< 2e-16	142.61
Other Race	-0.070	0.004	-15.616	< 2e-16	
Northeast	0.010	0.001	13.217	< 2e-16	
South	-0.004	0.001	-7.028	< 0.001	
West	0.022	0.002	10.651	< 2e-16	
Table 5. Op	timized Mc	del for Hydr	ocodone	Prescriptio	on Cour

Estimate	Std. Error	z value	Pr(> z)	VIF
152.900	194.500	0.786	0.432	
-0.077	0.097	-0.792	0.428	57.590
-0.002	0.001	-1.236	0.216	42.808
0.005	0.002	2.134	0.033	142.616
-0.023	0.007	-3.025	0.002	
-0.005	0.002	-2.706	0.007	
	Estimate 152.900 -0.077 -0.002 0.005 -0.023 -0.005	EstimateStd. Error152.900194.500-0.0770.097-0.0020.0010.0050.002-0.0230.007-0.0050.002	EstimateStd. Errorz value152.900194.5000.786-0.0770.097-0.792-0.0020.001-1.2360.0050.0022.134-0.0230.007-3.025-0.0050.002-2.706	EstimateStd. Errorz valuePr(> z)152.900194.5000.7860.432-0.0770.097-0.7920.428-0.0020.001-1.2360.2160.0050.0022.1340.033-0.0230.007-3.0250.002-0.0050.002-2.7060.007

Table 2. Optimized Model for NSAID Prescription Counts

Predictor	Estimate	Std. Error	z value	Pr(> z)	VIF
Intercept	1.023	119.600	0.009	0.993	
Year	-0.002	0.059	-0.030	0.976	57.590
Male	-0.001	0.001	-1.009	0.313	42.808
Female	0.003	0.002	2.081	0.037	142.616
Other Race	-0.016	0.005	-2.980	0.003	
West	0.008	0.003	2.542	0.011	

Table 4. Optimized Model for Oxycodone Prescription Counts

Predictor	Estimate	Std. Error	z value	Pr(> z)	VIF
Intercept	79.390	216.800	0.366	0.714	
Year	-0.041	0.108	-0.380	0.704	57.590
Male	-0.025	0.005	-4.562	0.000	42.808
Female	-0.015	0.005	-3.286	0.001	142.616
Caucasian/White	0.028	0.006	4.529	0.000	
Northeast	0.007	0.002	3.326	0.001	
West	0.018	0.006	2.962	0.003	

Table 6. Optimized Model for Morphine Prescription Counts

Results (cont.)

- **Dataset:** TriNetX Research Network (161M+ patients, 139 healthcare organizations).
- Study Period: 2011-2023.
- Cohort Definition: Patients who underwent
 endoscopic pituitary surgery (CPT: 62165) in
 a given year.

Medications Analyzed

- Opioids: Tramadol (RxNorm: 10689),
 Hydrocodone (RxNorm: 5489), Oxycodone
 (RxNorm: 7804), Morphine (RxNorm: 7052).
- Non-Opioids: NSAIDs.

Statistical Analysis

1. Descriptive Statistics

- Mean, age, gender, racial distribution analyzed.
- Prescription frequencies calculated for each drug.

2. Time Series Analysis

- Linear Regression: Assessed annual percentage changes in opioid and NSAID prescriptions.
- **Poisson Regression:** Modeled annual

1. Trends in Opioid and NSAID Prescriptions

- Opioid prescriptions increased from 19.9% (2012) to 52.9% (2021) (B = 2.21, p = 0.0042).
- Oxycodone (+1.53% per year, p = 0.0042) and tramadol (+0.56% per year, p = 0.0042) increased significantly.
- Hydrocodone (-0.43% per year, p < 0.001) and NSAIDs (-1.28% per year, p = 0.0015) declined significantly.
- Morphine showed no significant trend (p = 0.70).

2. Gender Disparities

- Females had higher opioid (B = 0.0086, p < 0.001) and hydrocodone (B = 0.0114, p < 0.001) prescriptions.</p>
- NSAIDs were also prescribed more to females ($\beta = 0.0046$, p = 0.033).
- Males were less likely to receive morphine ($\beta = -0.0246$, p < 0.001).
- No gender difference for tramadol (p = 0.999).

3. Racial Disparities

- Minority patients received fewer opioids, especially hydrocodone (B = -0.0699, p < 0.001) and tramadol (B = -0.0207, p = 0.0003).
- White patients had higher morphine prescriptions (B = 0.0278, p < 0.001).
- NSAID prescriptions were lower in Asian patients (B = -0.0227, p = 0.0025).

4. Regional Differences

- Opioid prescriptions were higher in the Northeast (B = 0.0074, p < 0.001) and West (B = 0.0111, p = 0.0001).
- Hydrocodone prescriptions were lower in the South (B = -0.0045, p < 0.001).
- NSAIDs were prescribed less in the Midwest ($\beta = -0.0055$, p = 0.007).

prescription counts, adjusting for cohort size.

3. Multivariable Analysis

- Beta Regression: Investigated the influence of demographics (age, gender, race, region) on prescription trends.
- Adjusted for multicollinearity (VIF < 10) and removed near-zero variance predictors.
- Sequential model selection based on AIC
 reduction criteria to identify the best-fit model.

- 1. Opioid prescriptions have increased significantly post-surgery, with oxycodone and tramadol rising while NSAID use declines, despite evidence supporting multimodal pain management.
- 2. Females receive more opioids and NSAIDs, while males are prescribed fewer morphine-based medications, reflecting potential provider biases.
- 3. Minority patients receive fewer opioids, particularly hydrocodone, suggesting systemic disparities in pain management.
- 4. Regional differences indicate prescribing patterns are shaped by policy, provider preferences, and access to care, with higher opioid use in the Northeast and West.
- 5. Reducing opioid reliance may require promoting NSAIDs and acetaminophen