

# Impact of Lesion Size on Postoperative Outcomes in a Large Single Institutional Cohort of Somatotroph Tumors Receiving Transsphenoidal Surgery



0 (0%)

High ADH

0 (0%)

Seán B Lyne, MD<sup>1</sup>; Kaasinath Balagurunath, BA<sup>1</sup>; Christopher S. Hong, MD<sup>1</sup>; Jakob V Gerstl, MBBS<sup>1</sup>; Ryan Chrenek, MD<sup>1</sup>; Noah L Nawabi BS<sup>1</sup>; Rania A Mekary, PhD<sup>2</sup>; Timothy R. Smith, MD PhD<sup>1</sup> <sup>1</sup>Brigham and Women's Hospital, <sup>2</sup>Massachusetts College of Pharmacy and Health Sciences

Diabetes Mellitus

### Introduction

Somatostatin analogue administration is a first line treatment used to reduce tumor volume prior to or after transsphenoidal surgery. However, despite their widespread usage there is a subset of tumors that do not respond significantly to medical therapy and require intervention through transsphenoidal surgery (TSS). There has been a paucity of data on the preoperative and postoperative endocrinological characteristics of this subset of lesions as well as overall clinical outcomes to TSS with regards to lesion size in acromegaly patients.

We aimed in this study to characterize the clinical characteristics and postoperative outcomes in acromegaly patients receiving

| Drooporativ               | o Charact         | oriction         | Endo         | orinolog           | rical La          | he –             |
|---------------------------|-------------------|------------------|--------------|--------------------|-------------------|------------------|
| Preoperativ               | e charact         | eristics         | Enac         | ocrinolog          | sical La          | 105              |
|                           | Size >1cm (n=112) | Size <1cm (n=46) |              |                    | Size >1cm (n=112) | Size <1cm (n=46) |
| Age                       | 46.43 ± 15        | 50.4 ± 13        |              | Hyponatremia       | 5 (4.5%)          | 0 (0%)           |
| Male Gender               | 47 (42%)          | 23 (50%)         |              | Hypernatremia      | 2 (1.%)           | 0 (0%)           |
| BMI                       | 28.9 ± 5.1        | $30.4 \pm 5.4$   |              | <i>,,</i>          |                   |                  |
| Height (in)               | 67.7 ± 4.5        | 67.6 ± 4.5       |              | Hyperprolactinemia | 27 (26.5%)        | 5 (12.8%)        |
| Weight (lbs)              | 192.2 ± 46        | 198.3 ± 39       |              | Hypoprolactinemia  | 8 (7.8%)          | 3 (7.7%)         |
| Hypopituitarism           | 4 (3.6%)          | 0 (0%)           |              | Hypocortisolism    | 18 (17.5%)        | 2 (4.7%)         |
| Weight Gain               | 25 (22.3%)        | 6 (13%)          |              | Hypercortisolism   | 5 (4.9%)          | 7 (16.3%)        |
| Skin Changes              | 36 (32.1%)        | 20 (43.5%)       |              |                    | · · ·             | · ·              |
| Infection                 | 1 (0.9%)          | 1 (2.2%)         |              | Hypothyroidism     | 25 (23.6%)        | 4 (9.3%)         |
| Skin Hyperpigmentation    | 6 (5.4%)          | 1 (2.2%)         | Preoperative | Hyperthyroidism    | 0 (0%)            | 0 (0%)           |
| Depression                | 2 (1.8%)          | 4 (8.7%)         |              | Hypoadrenalism     | 8 (7.5%)          | 2 (4.7%)         |
| Hypertrichosis            | 3 (2.7%)          | 1 (2.2%)         |              | Hyperadrenalism    | 4 (3.7%)          | 4 (9.3%)         |
| Anxiety                   | 2 (1.8%)          | 0 (0%)           |              |                    |                   |                  |
| Cognitive Dysfunction     | 2 (1.8%)          | 2 (4.3%)         |              | Hypogonadism       | 20 919.6%)        | 8 (19%)          |
| Headache                  | 46 (41.1%)        | 18 (39.1%)       |              | Low GH             | 0 (0%)            | 0 (0%)           |
| Tumor Induced Visual Loss | 26 (23.2%)        | 6 (13%)          |              | High GH            | 93 (86.1%)        | 37 (80.4%)       |
| Acromegalic Bone Changes  | 83 (74.1%)        | 34 (73.9%)       |              | Low ADH            | 2 (5.7%)          | 2 (16.7%)        |
|                           | 20(47.00)         |                  |              |                    | · · · ·           | · · · ·          |

transsphenoidal surgery for macroadenomas versus microadenomas. In addition, we assessed relationships to preoperative therapy such as preoperative somatostatin analogue administration.

## Methods and Materials

In this single institution retrospective study a large cohort of 158 acromegaly patients who underwent TSS for acromegaly were examined. Lesions 1 centimeter or greater in maximum diameter were considered macroadenomas. Radiological, surgical, clinical, and endocrinological characteristics preoperatively and postoperatively were documented for analysis. Hormone values were determined at preoperatively and up to 3 years postoperatively for most patients. Pituitary adenoma size, location, and dimensions were determined using preoperative magnetic-resonance-imaging (MRI) and computerized-tomography (CT) imaging. T tests and chi-square tests were not performed due to a high type-1 error rate, as such a multivariate logistic regression model was created to determine which characteristics were predictive of postoperative outcome.

#### Results

Among the 158 patients with data available, 112 (70.9%) had macroadenomas and 46 (29.1%) had microadenomas. The rates of common preoperative symptoms were largely similar in large versus

| Hypertension            | 42 (37.5%) | 22 (47.8%) |               |                    |            |            |
|-------------------------|------------|------------|---------------|--------------------|------------|------------|
| Coronary Artery Disease | 1 (0.9%)   | 1 (2.2%)   |               | Hyponatremia       | 32 (29.1%) | 4 (9.1%)   |
| Stroke                  | 0 (0%)     | 1 (2.2%)   |               | Hypernatremia      | 5 (4.5%)   | 2 (4.5%)   |
| Hyperlipidemia          | 19 (17%)   | 9 (19.6%)  |               | Hyperprolactinemia | 8 (7.3%)   | 2 (4.5%)   |
| Tobacco                 | 5 (4.5%)   | 2 (4.3%)   |               |                    |            |            |
| Obesity                 | 16 (14.3%) | 6 (13%)    |               | Hypoprolactinemia  | 37 (33.9%) | 13 (29.5%) |
| Synthroid               | 20 (17.9%) | 2 (4.3%)   |               | Hypocortisolism    | 2 (1.9%)   | 2 (4.4%)   |
| Diabetes Mellitus Oral  | 15 (13.4%) | 5 (10.9%)  |               | Hypercortisolism   | 66 (61.7%) | 31 (68.9%) |
| Insulin                 | 5 (4.5%)   | 1 (2.2%)   | Postoperative | Hypothyroidism     | 18 (17.1%) | 2 (4.8%)   |
| GH                      | 0 (0%)     | 0 (0%)     |               |                    | 0 (0%)     | 0 (0%)     |
| Testosterone            | 4 (3.6%)   | 1 (2.2%)   |               | Hyperthyroidism    | 0 (0 %)    | 0 (0 %)    |
| Desmopressin            | 1 (0.9%)   | 0 (0%)     |               | Hypoadrenalism     | 12 (11.2%) | 6 (13%)    |
| HTN                     | 25 (22.3%) | 16 (34.8%) |               | Hyperadrenalism    | 1 (0.9%)   | 1 (2.2%)   |
| Beta Blocker            | 14 (12.5%) | 9 (19.6%)  |               | Hypogonadism       | 9 (13.2%)  | 7 (24.1%)  |
| Statins                 | 19 (17%)   | 11 (23.9%) |               |                    | 0 (0%)     | 0 (0%)     |
| Cabergoline             | 7 (6.2%)   | 3 (6.5%)   |               | Low GH             | 0 (078)    | 0 (078)    |
| Somatostatin Analogues  | 0 (0%)     | 0 (0%)     |               | High GH            | 34 (30.6%) | 11 (23.9%) |

7 (15.2%)

20 (17.9%)

#### Macro vs. Micro Adenoma Characteristics

|                        |                         | Size >1cm (n=112) | Size <1cm (n=46 |
|------------------------|-------------------------|-------------------|-----------------|
|                        | Adherent                | 14 (12.5%)        | 2 (4.3%)        |
|                        | Invasive                | 16 (16.3%)        | 2 (4.9%)        |
|                        | Suprasellar             | 50 (48.1%)        | 0 (0%)          |
| Lesion Characteristics | Maximum Diameter (cm)   | 1.8 ± 0.7         | 0.7 ± 0.2       |
| Lesion characteristics | ABC/2 (cm^3)            | 2.8 ± 3.6         | 0.2 ± 0.1       |
|                        | MIB Index               | 2.44 ± 2.2        | 2.2 ± 1.9       |
|                        | Cystic                  | 16 (15.8%)        | 6 (15.4%)       |
|                        | Atypical                | 8 (7.6%)          | 1 (2.3%)        |
|                        | Microscopic Approach    | 9 (8%)            | 6 (13%)         |
|                        | Endoscopic Approach     | 110 (98.2%)       | 46 (100%)       |
|                        | Combined Approach       | 7 (6.3%)          | 6 (13%)         |
|                        | Fat Graft               | 46 (41.1%)        | 14 (30.4%)      |
| Surgical Approach      | Fascia                  | 0 (0%)            | 0 (0%)          |
|                        | Nasal Packing           | 55 (49.1%)        | 15 (32.6%)      |
|                        | Lumbar Drain            | 1 (0.9%)          | 0 (0%)          |
|                        | Nasoseptal Flap         | 6 (5.4%)          | 0 (0%)          |
|                        | Intraoperative CSF Leak | 33 (29.5%)        | 10 (21.7%)      |
|                        | FSH                     | 9 (8.3%)          | 2 (4.5%)        |
|                        | LH                      | 11 (9.9%)         | 2 (4.4%)        |
|                        | GH                      | 112 (100%)        | 45 (97.8%)      |
| IHC Staining           | ACTH                    | 31 (27.9%)        | 7 (15.6%)       |
|                        | TSH                     | 16 (14.4%)        | 2 (4.4%)        |
|                        | Prolactin               | 70 (63.1%)        | 25 (55.6%)      |
|                        | P53                     | 41 (51.9%)        | 21 (63.6%)      |

small tumors, such as headache (41.1% vs 39.1%) and acromegalic-bone changes (75.1% vs 73.9). Unsurprisingly, tumor induced visual field or visual acuity deficits were more common in macroadenomas (23.2% vs 13%). The rates of preoperative comorbidities and medication prescription were overall similar between groups.

Preoperatively, macroadenomas experienced higher rates of hyperprolactinemia (26.5% vs 12.8%), hypocortisolism (17.5% vs 4.7%), and hypothyroidism (23.6%). However, rates of preoperative hypercortisolism were higher in patients with microadenomas (16.3% vs 4.9%). Postoperatively, hypercortisolism and hypoprolactinemia remained the most common types of endocrine dysfunction. The majority of lesions included were intrasellar, with suprasellar-extension occurring in 48.1% of macroadenomas. Average diameter for macroadenomas was 1.8 ± 0.7 cm while average lesion volume was 2.8 ± 3.6 cm. Tumor histology, including hormone co-staining and the MIB index were overall similar between groups. Nearly all patients received endoscopic TSS (98.7% overall) with the most common sellar reconstruction method being nasal packing.

Despite a lower rate of gross total resection in macroadenomas (79.5% vs 93.5%) the rates of biochemical remission (76.7% vs 73.3%) and recurrence (10.7% vs 8.7%) rates were largely similar between groups. Multivariate logistic regression demonstrated that large lesion size was

| Posto | perative | Outcome | S |
|-------|----------|---------|---|
|       |          |         |   |

|                      |                              | Size >1cm (n=112) | Size <1cm (n=46) |
|----------------------|------------------------------|-------------------|------------------|
|                      | SIADH                        | 10 (8.9%)         | 1 (2.2%)         |
|                      | Transient Diabetes Insipidus | 8 (7.1%)          | 7 (15.2%)        |
|                      | Permanent Diabetes Insipidus | 1 (0.9%)          | 1 (2.2%)         |
|                      | Postoperative CSF Leak       | 2 (1.8%)          | 0 (0%)           |
|                      | Epistaxis                    | 4 (3.6%)          | 3 (6.5%)         |
|                      | ICA Injury                   | 0 (0%)            | 0 (0%)           |
| Complications        | Abscess                      | 0 (0%)            | 0 (0%)           |
| Complications        | Meningitis                   | 2 (1.8%)          | 0 (0%)           |
|                      | Site Infection               | 1 (0.9%)          | 0 (0%)           |
|                      | Visual Deficit               | 1 (0.9%)          | 0 (0%)           |
|                      | Hemorrhage                   | 2 (1.8%)          | 0 (0%)           |
|                      | Sinusitis                    | 0 (0%)            | 0 (0%)           |
|                      | Readmission Within 30 Days   | 9 (8.1%)          | 2 (4.3%)         |
|                      | Reoperation Within 30 Days   | 3 (2.7%)          | 0 (0%)           |
|                      | Recurrence                   | 12 (10.7%)        | 4 (8.7%)         |
| Doctonorativo Courco | Gross Total Resection        | 89 (79.5%)        | 43 (93.5%)       |
| Postoperative Course | ICU Admission                | 8 (7.3%)          | 4 (8.7%)         |
|                      | Biochemical Remission        | 69 (76.7%)        | 22 (73.3%)       |
|                      | Dopamine Agonist             | 1 (2.2%)          | 7 (6.4%)         |
|                      | Thyroid Hormone Replacement  | 22 (19.8%)        | 2 (4.3%)         |
|                      | Testosterone Replacement     | 8 (7.2%)          | 3 (6.7%)         |
| Hormone Replacement  | Estrogen Replacement         | 0 (0%)            | 1 (2.2%)         |
|                      | Cortisol Replacement         | 22 (20%)          | 7 (15.2%)        |
|                      | Sandostatin                  | 2 (1.8%)          | 1 (2.2%)         |
|                      | Desmopressin                 | 2 (1.8%)          | 2 (4.4%)         |

not associated with a greater odds of developing complications such as a CSF leak, dysnatremia, recurrence, or failure of biochemical remission.

#### Conclusions

Overall, despite differences in preoperative hormone dysfunction and gross total resection rates lesion size was not associated with a greater risk of developing postoperative complications or failure to achieve biochemical remission in patients undergoing surgery for growth hormone secreting adenomas.

#### Macroadenoma Predictive Power

|                                  | Odds Ratio | Lower Bound | Upper Bound |
|----------------------------------|------------|-------------|-------------|
| Any CSF Leak (n=45)*             | 0.43       | 0.2         | 44          |
| Dysnatremia (n=17)**             | 0.99       | 0.39        | 3.74        |
| Recurrence (n=16)***             | 1.33       | 0.4         | 4.4         |
| Biochemical Remission (n=91)**** | 1.28       | 0.48        | 3.41        |

\* Other covariates included suprasellar location and gross total resection

\*\* Other covariates included gross total resection

\*\*\* Other covariates included gross total resection

\*\*\*\* Other covariates included gross total resection, preoperative visual loss, and preoperative GH hypersecretion