

Delayed cerebrospinal fluid leak following endoscopic transnasal skull base surgery Association between reconstruction method and impact of radiation therapy Motoyuki Umekawa, MD¹;

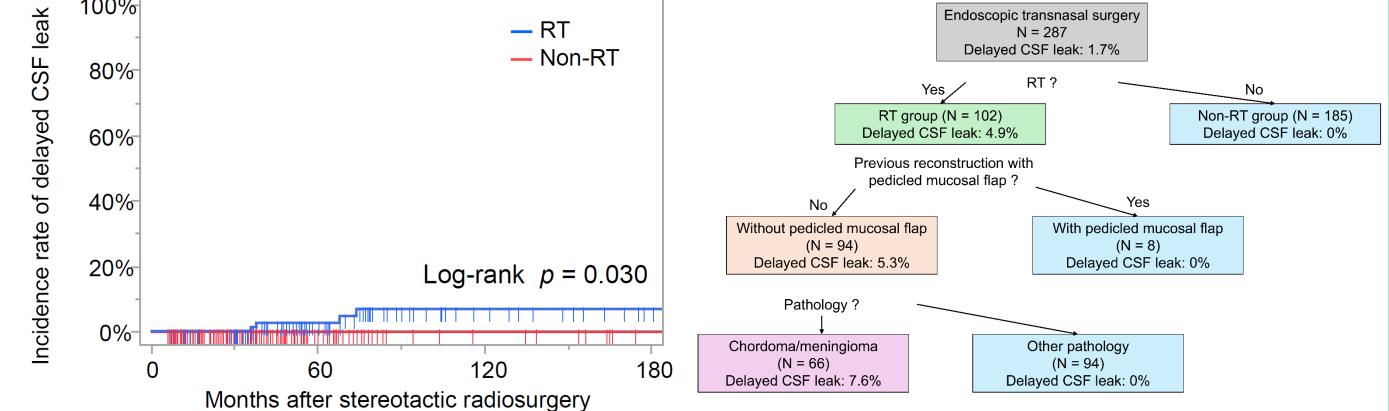
Hirotaka Hasegawa, MD, PhD^{1,2}; Yuki Shinya, MD, PhD^{1,3}; Masahiro Shin, MD, PhD⁴; Nobuhito Saito, MD, PhD¹ Department of Neurosurgery, ¹University of Tokyo, ²Saitama Medical Center, ⁴Teikyo University, and ³Department of Neurologic Surgery, Mayo Clinic

Abstract

- Aggressive skull base tumors such as chordomas and high-grade meningiomas are challenging to manage, requiring endoscopic transnasal surgery (ETS) followed by radiation therapy (RT). However, delayed cerebrospinal fluid (CSF) leaks can occur as a late complication.
- This study retrospectively analyzed 287 patients who underwent ETS, with a focus on the incidence and risk factors for delayed CSF leaks. The results showed a significantly higher incidence in the RT group (7.0% at 10 years) compared to the non-RT group (0% at 10 years). Importantly, no delayed CSF leaks occurred in patients who underwent mucosal flap-based reconstruction.
- Our findings suggest that vascularized mucosal flaps provide greater resilience against radiation-induced complications. For patients requiring multiple surgeries and RT, skull base reconstruction using pedicled mucosal flaps may be a key factor in preventing delayed CSF leaks.

Results

- **1. Incidence of Delayed CSF Leaks** Overall incidence: 1.7% (5/287 patients).
- **2.** Risk Factors for Delayed CSF Leaks


RT Group (n=102): **Higher incidence** of delayed CSF leak (7.0%/10 years). Non-RT Group (n=185): No delayed CSF leaks (0%/10 years, p=0.030).

- Significant risk factors:
 - **Chordoma pathology** (*HR* 9.48, *p*=0.045)
 - Increased number of ETS sessions (*HR* 1.93, *p*=0.001)
 - Increased number of RT sessions (*HR* 1.55, *p*=0.009)

3. Repair for delayed CSF leaks

One CSF leak recurrence: 26 months after non-vascularized multilayered closure **No CSF leak recurrence**: Using mucosal flap-based multilayered closure

100%

Introduction

- ETS has been widely adopted for resection of midline skull base tumors, including aggressive tumors such as chordomas, meningiomas, and craniopharyngiomas.
- In our institution, **non-vascularized multilayered closure** has been basically utilized for skull base reconstruction. Mucosal flap-based closure is limitedly used avoiding postoperative nasal dysfunction.¹

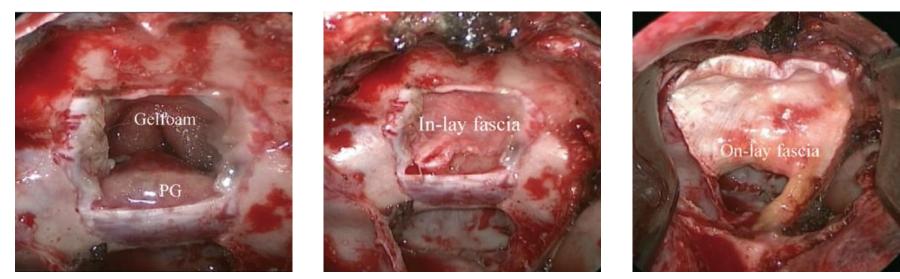


Figure 1. Non-vascularized multilayered closure from Hasegawa et al.¹

- Despite advancements in reconstruction techniques, delayed CSF leaks **remain a rare but serious complication**, particularly in patients undergoing RT.²⁻⁴
- This study investigates the incidence of delayed CSF leaks, the impact of RT, and the efficacy of various reconstruction techniques.

Methods and Materials

Patient Selection: Retrospective study of 287 patients who underwent ETS **Study Period**: Nov 2016 – Oct 2023.

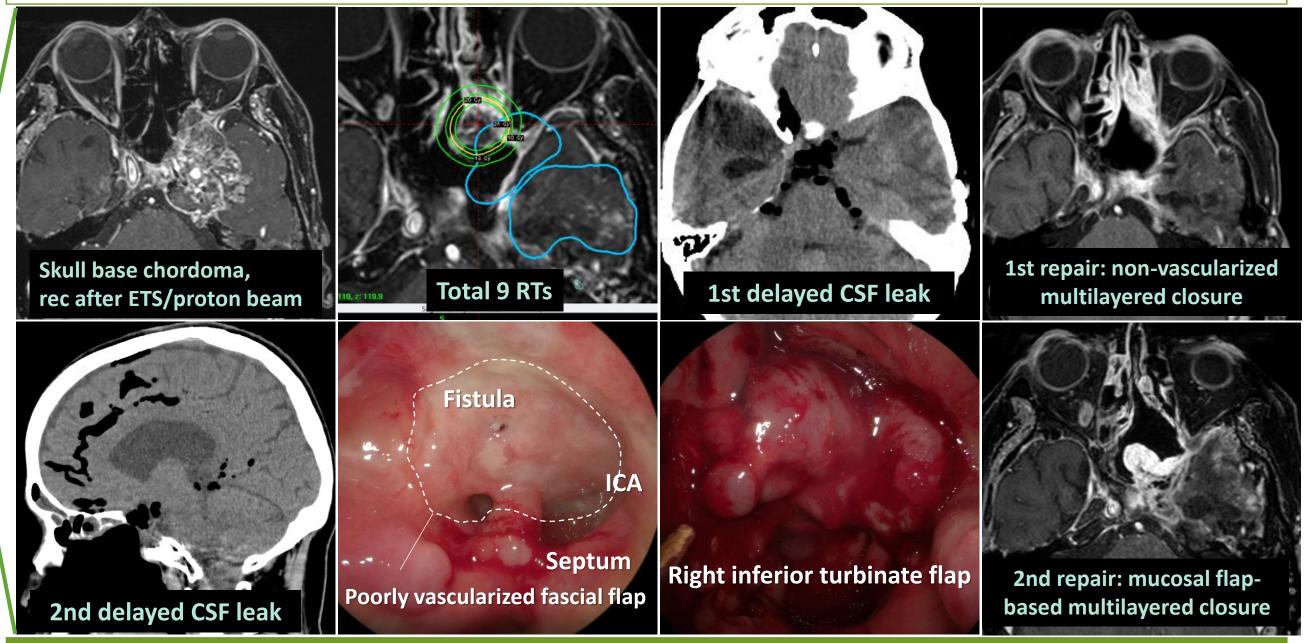
Figure 2. Cumulative incidence rate of delayed CSF leak

Figure 3. Recursive partitioning analysis for delayed CSF leak

Discussion

1. Incidence of Delayed CSF Leak

- The overall incidence was 1.7%, which demonstrated robustness of nonvascularized multilayered closure.
- Only observed in patients with a history of RT.
- Patients requiring multiple ETS and RT sessions were at the highest risk.
- These findings highlight the importance of long-term surveillance.
- 2. The Role of Radiation Therapy in Skull Base Dehiscence
 - High-dose RT (SRS, proton beam therapy) increases the risk of skull base dehiscence.^{5,6}
 - Mechanisms of RT-induced damage^{7,8}:
 - Vascular endothelial injury → reduced blood supply
 - Fibrosis progression → **tissue breakdown**
 - Osteonecrosis → delayed CSF leak
- RT should be planned to **minimize normal tissue damage** while maintaining tumor control. **3.** Mucosal Flap-Based Closure for Delayed CSF Leaks • Pedicled mucosal flaps (e.g., nasoseptal, inferior turbinate flaps) improve vascularization and tissue durability.⁹ • All patients who underwent mucosal flap-based repair had no recurrence of delayed CSF leak. • Consideration for early use of mucosal flaps in high-risk patients may be beneficial, but optimal mucosal flap use is needing further investigation.


Data Collected: Baseline/Tumor pathology/Number of ETS and RT sessions **Reconstruction Method:**

1) Simple closure

- 2) Non-vascularized multilayered closure
- 3) Mucosal flap-based multilayered closure

Definition of Delayed CSF Leak: Any CSF leak occurring ≥6 months post-surgery. **Statistical Analysis**: Kaplan–Meier survival analysis and Cox proportional hazard models were used to assess risk factors.

Age/ Sex	Pathology	No. ETS	Espo sito	Skull base reconstruction	No. RT	RT	From initial/lates t ETS to CSF leak, m	From initial/lates t RT to CSF leak, m	Reconstruction for delayed CSF leak	From mucosal flap reconstructi on to last follow-up, m
38 M	Chordoma Figure 4	7	3	Non- vascularized multilayered closure	9	Proton , GK	193/46	129/4	1 st , Non- vascularized multilayered closure (failure at 26 months); 2 nd , Inferior turbinate mucosal flap [†]	31
49 F	Chordoma	2	3	Non- vascularized multilayered closure	6	GK	74/19	73/1	Nasopharyngeal flap	16
69 F	Chordoma	3	3	Non- vascularized multilayered closure	1	GK	68/54	46/46	Nasopharyngeal flap	8
23 F	Chordoma	5	0	Simple closure	2	GK	36/8	35/6	Nasopharyngeal flap	42
75 F	Atypical meningioma	5	3	Non- vascularized multilayered	3	GK	38/8	32/5	Middle turbinate mucosal flap	20

Conclusions

- **Delayed CSF leaks** are rare but can occur in patients undergoing RT after ETS.
- **Mucosal flap-based closure** may be an effective strategy for both prevention and repair of delayed CSF leaks.

Table 1. Summary of delayed cerebrospinal fluid leaks after endoscopic transnasal surgery.

closure

Careful **patient selection** and **reconstruction planning** are essential in cases requiring multiple surgeries and RTs.

Contact

[name] Motoyuki Umekawa

[organization] Department of Neurosurgery, The University of Tokyo [address] Hongo 7-3-1, Bunkyo-ku, Tokyo, JAPAN. Postal code 113-8655 [email] umekawam-nsu@h.u-tokyo.ac.jp [phone] +81-3-5800-8853

References

- 1. Hasegawa H, et al: Long-term Outcomes of Non-vascularized Multilayer Fascial Closure Technique for Dural Repair in Endoscopic Transnasal Surgery: Efficacy, Durability, and Limitations. World Neurosurg 175:e97-e107, 2023
- 2. Ogawa Y, et al: Delayed cerebrospinal fluid leakage 10 years after transsphenoidal surgery and gamma knife surgery - case report. Neurol Med Chir (Tokyo) 47:483-485, 2007
- 3. Perry A, et al: Delayed Cerebrospinal Fluid Rhinorrhea After Gamma Knife Radiosurgery with or without Preceding Transsphenoidal Resection for Pituitary Pathology. World Neurosurg 100:201-207, 2017
- 4. Lee JJ, et al: Delayed Cerebrospinal Fluid Leakage After Treatment of Skull Base Tumors: Case Series of 9 Patients. World Neurosurg 132:e591-e598, 2019
- 5. Fung V, et al: Proton beam therapy for skull base chordomas in 106 patients: A dose adaptive radiation protocol. Radiother Oncol 128:198-202, 2018
- 6. Hong S, et al: Analysis of Early Outcomes of Pencil Beam Proton Therapy Compared with Passive Scattering Proton Therapy for Clival Chordoma. World Neurosurg 171:e644-e653, 2023
- 7. Burger PC, Mahley MS, Jr., Dudka L, Vogel FS: The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256-1272, 1979
- 8. Santoni R, Liebsch N, Finkelstein DM, Hug E, Hanssens P, Goitein M, et al: Temporal lobe (TL) damage following surgery and high-dose photon and proton irradiation in 96 patients affected by chordomas and chondrosarcomas of the base of the skull. Int J Radiat Oncol Biol Phys 41:59-68, 1998
- London NR, Jr., Mohyeldin A, Montaser AS, Tanjararak K, Prevedello DM, Otto 9. BA, et al: Contributing factors for delayed postoperative cerebrospinal fluid leaks and suggested treatment algorithm. Int Forum Allergy Rhinol 10:779-784, 2020