

# **Radiomics and Artificial Intelligence for Predicting PitNET Consistency: A Systematic Review and Meta Analysis**



Maria Isabel Ocampo-Navia, MD<sup>1</sup>; Mariana Agudelo-Arrieta, MD<sup>1</sup>; Felipe Marín-Navas, MD<sup>1</sup>; Alex Taub-Krivoy, MD<sup>1</sup>; Wilfran Perez-Mendez, MD<sup>1</sup>; Nayeh Arana-Isaac, MS<sup>1</sup>; Lucas Pari Mitre, MD<sup>2</sup>; Oscar Feo-Lee, MD<sup>1</sup> <sup>1</sup>Neurosurgery Department, Pontificia Universidad Javeriana, Colombia <sup>2</sup>Faculty of Medicine, Santa Casa de São Paulo School of Medical Sciences

# Introduction

Pituitary neuroendocrine tumors (PitNETs) represent approximately 16% of primary brain tumors. The tumor's consistency, whether soft or fibrous, significantly impacts surgical planning and outcomes. Radiomics shows potential for predicting this consistency and assessing surgical outcomes, although its predictive accuracy is still under investigation.

This article aims to conduct a systematic review of the literature and metaanalysis on the utility of artificial intelligence and radiomics to predict the consistency of PitNETs.

Figure 1. Radiomics process.



#### Radiomic feature extraction Tumor intensity

# Results

- Nine studies were included, covering 947 patients with PitNETs who • underwent tumor consistency prediction using radiomics.
- 66.8% had soft tumors and 33.2% had firm tumors.
- MRI machines with varying magnetic field strengths (1.5T and 3T) and different regions of interest (2D and 3D) were used across studies, with manual segmentation being the most common method.
- Prediction models demonstrated AUC values ranging from 0.71 to 0.99.
- The RQS averaged 14.2 (39.5%), and the QUADAS-2 tool revealed a varied  $\bullet$ risk of bias, mainly in patient selection and flow/timing domains, though applicability concerns were minimal.
- Meta-analysis showed that algorithms had an overall accuracy of 84% in predicting tumor consistency, with a pooled sensitivity of 84%, specificity of



# **Methods and Materials**

- A systematic review and meta-analysis was conducted and reported following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
- Four databases were searched for published literature on PitNET consistency prediction using radiomics and/or artificial intelligence.
- Data extraction was carried out independently by two reviewers, and findings were synthesized through narrative analysis and comparative assessment.
- The risk of bias and applicability concerns of the included studies were lacksquareassessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The Radiomics Quality Score (RQS) for each study was calculated to assess adherence to established best practices.

78%, and an AUC of 0.89, despite significant heterogeneity among studies.

Figure 4. Meta-analysis forest plot graphics.

| Pooled accuracy        |                                                              |      |              |    |                   |           |        |          |       | Weight     | Weight   |
|------------------------|--------------------------------------------------------------|------|--------------|----|-------------------|-----------|--------|----------|-------|------------|----------|
| Study                  | (TN+                                                         | TP)  | (TN+TP+FN+FI | P) |                   | Propo     | ortion | 95%      | ∕₀–CI | (common)   | (random) |
| Wan 2022               |                                                              | 42   | 4            | 18 |                   |           | 0.88   | [0.75; ( | 0.95] | 9.4%       | 15.4%    |
| Zeynalova 2019 ł       | nard consistency                                             | 58   | 8            | 30 |                   |           | 0.72   | [0.61; 0 | 0.82] | 8.6%       | 14.9%    |
| Cuocolo 2020           | -                                                            | 26   | 2            | 28 |                   | _         | 0.93   | [0.76; 0 | 0.99  | 9.0%       | 15.2%    |
| Fan 2019               |                                                              | 45   | 5            | 58 |                   |           | 0.78   | [0.65; 0 | 0.87] | 7.1%       | 13.9%    |
| Wang 2021              |                                                              | 139  | 17           | 70 |                   |           | 0.82   | [0.75; 0 | 0.87] | 24.4%      | 19.6%    |
| Zhu 2020               |                                                              | 139  | 15           | 52 | - +               |           | 0.91   | [0.86; ( | 0.95] | 41.5%      | 21.1%    |
| Common effect          | Common effect model                                          |      |              | 86 | \$                |           | 0.86   | [0.83; ( | ).89] | 100.0%     |          |
| Random effects         | Random effects model                                         |      |              |    | $\diamond$        | _         | 0.84   | [0.78; 0 | ).91] | -          | 100.0%   |
| Heterogeneity: $I^2$ = | Heterogeneity: $I^2 = 74\%$ , $\tau^2 = 0.0043$ , $p < 0.01$ |      |              |    |                   |           |        |          |       |            |          |
|                        |                                                              |      |              |    | 0 0.2 0.4 0.6 0.8 | 1         |        |          |       |            |          |
| <u>Sensitivity</u>     |                                                              |      |              |    |                   |           |        |          | ۱۸    | laight M   | laight   |
| Study                  |                                                              | TP ( | TP+FN)       |    | P                 | roportion | 95     | 5%–Cl    | (com  | imon) (ran | dom)     |
| Fiore 2023             |                                                              | 52   | 64           |    | <b>_</b>          | 0.81      | [0.70  | ; 0.90]  | -     | 12.9% 1    | 2.0%     |
| Wan 2022               |                                                              | 40   | 48           |    |                   | 0.83      | 0.70   | 0.93     | -     | 10.6% 1    | 1.1%     |
| Rui 2019 neo           | ative features                                               | 47   | 53           |    |                   | 0.89      | 10.77  | 0.961    | -     | 16.2% 1    | 3.0%     |
| Rui 2019 pos           | ,<br>itive featurs                                           | 45   | 53           |    |                   | 0.85      | 0.72   | 0.93     | -     | 12.7% 1    | 2.0%     |
| Zevnalova 20           | 19 hard consistency                                          | 25   | 38           |    |                   | 0.66      | [0.49  | 0.801    |       | 5.2%       | 7.7%     |
| Zevnalova 20           | 19 soft consistency                                          | 33   | 42           |    | ia<br><b>1</b>    | 0.79      | [0.63  | 0.901    |       | 7.6%       | 9.6%     |
| Su 2020                |                                                              | 39   | 50           |    |                   | 0.78      | [0.64  | 0.881    |       | 8.9%       | 0.3%     |
|                        | )                                                            | 13   | 13           |    |                   | 1 00      | [0 75  | 1 001    | -     | 12.4%      | 1.9%     |
| Fan 2019               | -                                                            | 49   | 58           |    | 2                 | 0.84      | [0 73  | 0.931    | -     | 13.5%      | 2.3%     |

| Fan 2019                                     | 49                   | 58  |   |     |     |     |            | - | 0.84 [0.73; 0.93] | 13.5%  | 12.3%  |
|----------------------------------------------|----------------------|-----|---|-----|-----|-----|------------|---|-------------------|--------|--------|
| Common effect model                          |                      | 419 |   |     |     |     | ~          |   | 0.85 [0.81; 0.88] | 100.0% | -      |
| Random effects model                         |                      |     |   |     |     |     | $\diamond$ |   | 0.84 [0.78; 0.89] | -      | 100.0% |
| Heterogeneity: $I^2 = 58\%$ , $\tau^2 = 0.0$ | 0040, $p = 0.0^{-1}$ | 1   |   |     | I   |     |            |   |                   |        |        |
|                                              |                      |     | 0 | 0.2 | 0.4 | 0.6 | 0.8        | 1 |                   |        |        |

#### **Specificity**

|                 |                                                       |                   |      |         |     |     |                  |              |                              | Weight     | Weight   |
|-----------------|-------------------------------------------------------|-------------------|------|---------|-----|-----|------------------|--------------|------------------------------|------------|----------|
|                 | Study                                                 | TN (TN            | +FP) |         |     |     |                  | Proportion   | 95%-CI                       | (common)   | (random) |
|                 | Fiore 2023                                            | 55                | 64   |         |     |     | <u> </u>         | 0.86         | [0.75; 0.93]                 | 18.0%      | 12.9%    |
|                 | Wan 2022                                              | 42                | 48   |         |     |     | <u> </u>         | 0.88         | [0.75; 0.95]                 | 14.9%      | 12.4%    |
|                 | Rui 2019 negative features                            | 32                | 53   |         |     | _   |                  | 0.60         | [0.46; 0.74]                 | 7.5%       | 10.5%    |
|                 | Rui 2019 positive featurs                             | 36                | 53   |         |     |     |                  | 0.68         | [0.54; 0.80]                 | 8.3%       | 10.8%    |
|                 | Zeynalova 2019 hard consistency                       | 33                | 42   |         |     |     |                  | 0.79         | [0.63; 0.90]                 | 8.5%       | 10.9%    |
|                 | Zeynalova 2019 soft consistency                       | 25                | 38   |         |     | -   |                  | 0.66         | [0.49; 0.80]                 | 5.7%       | 9.5%     |
|                 | Su 2020                                               | 46                | 50   |         |     |     |                  | 0.92         | [0.81; 0.98]                 | 23.1%      | 13.3%    |
|                 | Cuocolo 2020                                          | 13                | 15   |         |     |     |                  | 0.87         | [0.60: 0.98]                 | 4.4%       | 8.5%     |
|                 | Fan 2019                                              | 41                | 58   |         |     |     |                  | 0.71         | [0.57; 0.82]                 | 9.5%       | 11.2%    |
|                 | Common effect model<br>Bandom effects model           |                   | 421  |         |     |     |                  | 0.81<br>0.78 | [0.77; 0.85]<br>[0.70: 0.85] | 100.0%     |          |
|                 | Heterogeneity: $l^2 = 75\%$ , $\tau^2 = 0.0096$       | , <i>p</i> < 0.01 |      |         | Γ   | T   |                  |              |                              | -          |          |
|                 |                                                       |                   |      | 0       | 0.2 | 0.4 | 0.6 0.8 1        |              |                              |            |          |
| Positive p      | predictive value                                      |                   |      |         |     |     |                  |              |                              |            |          |
|                 | Otherster                                             |                   |      |         |     |     |                  | Ducucution   |                              | weight     | weight   |
|                 | Study                                                 | IP (IP            | +FP) |         |     |     |                  | Proportion   | 95%-CI                       | (common)   | (random) |
|                 | Rui 2019 negative features                            | 37                | 53   |         |     |     | <u> </u>         | 0.70         | [0.56; 0.82]                 | 19.2%      | 18.3%    |
|                 | Rui 2019 positive features                            | 39                | 53   |         |     |     |                  | 0.74         | [0.60; 0.85]                 | 20.8%      | 19.1%    |
|                 | Zeynalova 2019 hard consistency                       | 25                | 38   |         |     | -   |                  | 0.66         | [0.49; 0.80]                 | 12.9%      | 14.5%    |
|                 | Zeynalova 2019 soft consistency                       | 33                | 42   |         |     |     |                  | 0.79         | [0.63; 0.90]                 | 19.0%      | 18.2%    |
|                 | Cuocolo 2020                                          | 13                | 15   |         |     |     |                  | 0.87         | [0.60; 0.98]                 | 9.9%       | 12.2%    |
|                 | Fan 2019                                              | 34                | 58   |         |     |     |                  | 0.59         | [0.45; 0.71]                 | 18.2%      | 17.8%    |
|                 | Common effect model                                   |                   | 259  |         |     |     | $\diamond$       | 0.71         | [0.66: 0.77]                 | 100.0%     |          |
|                 | Bandom effects model                                  |                   | 200  |         |     |     | $\dot{\diamond}$ | 0.72         | [0 64: 0 79]                 | 1001070    | 100.0%   |
|                 | Heterogeneity: $l^2 = 44\%$ $\tau^2 = 0.0034$         | p = 0.11          |      |         |     |     |                  | 0.1 -        |                              | •          |          |
|                 |                                                       | , <i>p</i> = 0.11 |      | 0       | 0.2 | 0.4 | 0.6 0.8 1        |              |                              |            |          |
| <b>Negative</b> | predictive value                                      |                   |      |         |     |     |                  |              |                              |            |          |
|                 |                                                       |                   |      |         |     |     |                  |              |                              | Weiaht     | Weight   |
|                 | Study                                                 | TN (TN-           | ⊦FN) |         |     |     |                  | Proportion   | 95%–CI (                     | common) (I | random)  |
|                 | Rui 2019 negative features                            | 45                | 53   |         |     |     | <b>i</b>         | 0.85         | 0.72: 0.931                  | 18.7%      | 17.7%    |
|                 | Rui 2019 positive features                            | 43                | 53   |         |     |     | <b>_</b>         | 0.81         | 0.68: 0.911                  | 15.7%      | 16.9%    |
|                 | Zevnalova 2019 hard consistency                       | 33                | 42   |         |     |     |                  | 0.79         | 0.63: 0.901                  | 11.3%      | 15.4%    |
|                 | Zevnalova 2019 soft consistency                       | 25                | 38   |         |     |     |                  | 0.66         | [0.49; 0.80]                 | 7.6%       | 13.3%    |
|                 |                                                       | 13                | 13   |         |     |     |                  | 1.00         | 0.75; 1.00]                  | 18.4%      | 17.6%    |
|                 | Fan 2019                                              | 52                | 58   |         |     |     |                  | 0.90         | 0.79; 0.96]                  | 28.3%      | 19.1%    |
|                 |                                                       |                   | 057  |         |     |     |                  |              | -                            | 100.00/    |          |
|                 | Common effect model                                   |                   | 257  |         |     |     |                  | 0.86 [       | 0.82; 0.90]                  | 100.0%     |          |
|                 | Handom effects model                                  | <b>-</b> -        |      | <b></b> |     |     |                  | 0.84 [       | 0.76; 0.93]                  | -          | 100.0%   |
|                 | Heterogeneity: $I^{-} = 72\%$ , $\tau^{-} = 0.0084$ , | <i>p</i> < 0.01   |      | ı<br>c  |     | ,   |                  |              |                              |            |          |
|                 |                                                       |                   |      | 0       | 0.2 | 0.4 | 0.6 0.8 1        |              |                              |            |          |
|                 |                                                       |                   |      |         |     |     |                  |              |                              |            |          |

Meta-analysis was conducted using random-effects modeling and visualized using forest plots.



### Limitations

The evolving nature of radiomics technology necessitates further research, particularly studies with larger populations and rigorous internal validation, to refine and validate predictive models. Significant heterogeneity in reporting outcomes.

## Conclusions

This study demonstrates the promising potential of radiomics, particularly when combined with artificial intelligence, in the study of neurological tumors, with a focus

on predicting the consistency of PitNETs. By distinguishing between soft and firm tumors, radiomics can significantly enhance preoperative planning, influence surgical approaches, and reduce complications, ultimately leading to better surgical outcomes.

# Contact

Maria Isabel Ocampo-Navia Pontificia Universidad Javeriana – Hospital Universitario San Ignacio Carrera 7 #40-62, Bogotá, Colombia Maria\_ocampo97@gmail.com +57 3166934111

Access QR code for: complete references list, tables and figures. 



- 1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro Oncol. 2023;25:IV1–99.
- 2. Tritos NA, Miller KK. Diagnosis and Management of Pituitary Adenomas: A Review. Jama. 2023;329(16):1386–98.
- 3. Araujo-Castro M, Acitores Cancela A, Vior C, Pascual-Corrales E, Rodríguez Berrocal V. Radiological Knosp, Revised-Knosp, and Hardy-Wilson Classifications for the Prediction of Surgical Outcomes in the Endoscopic Endonasal Surgery of Pituitary Adenomas: Study of 228 Cases. Front Oncol. 2021;11:807040.
- 4. Černý M, Sedlák V, Lesáková V, Francůz P, Netuka D. Methods of preoperative prediction of pituitary adenoma consistency: a systematic review. Neurosurg Rev [Internet]. 2023;46(1):1–13. Available from: https://doi.org/10.1007/s10143-022-01909-x
- 5. Nie D, Zhao P, Li C, Liu C, Zhu H, Gui S, et al. Application of "mosiac sign" on T2-WI in predicting the consistency of pituitary neuroendocrine tumors. Front Surg. 2022;9(July):1-8.